Gravity

Newton's law of gravitation

The force of attraction between any two objects:

- depends on the mass of the two objects. (More mass = more attraction)
- depends on the square of the separation. (Further apart = less attraction)
- is never zero.

Distance between centres of mass

Gravitational field strength

The gravitational field strength determines the acceleration of falling objects.

$$
F=\frac{-G M m}{r^{2}} \quad \begin{aligned}
& \text { Gravitational } \\
& \text { acceleration - just } \\
& \text { depends on the mass } \\
& \text { of the planet \& } \\
& \text { distance from centre. }
\end{aligned}
$$

At the surface of the Earth:

$$
a=\frac{\left(6.7 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}\right)\left(6.0 \times 10^{24} \mathrm{~kg}\right)}{\left(6.4 \times 10^{6} \mathrm{~m}\right)^{2}}=9.8 \mathrm{~m} / \mathrm{s}^{2}
$$

Gravitational field strength

Work \& Gravity

- Recall that work is the product of force and displacement.
- Work: W = Fx
- Gravitational potential energy: $E_{p}=m g \Delta h$
- This is an approximation at the surface where the strength of gravity is constant.
- As an object is lifted higher, less work is required due to the decreasing strength of gravity.
- At the height of the International Space Station, the gravitational field is still about 90% as strong as the surface.

Gravitational Potential Energy

- E_{p} can be evaluated by:
- Estimating the area under force (gravity) distance graph.
- Integration of the work function to find the exact area. (Not required for VCE study design.)

$$
W=\Delta E_{p}=\int_{r_{e}}^{h+r_{e}} F(r) d r=\int_{r_{e}}^{h+r_{e}} \frac{G M m}{r^{2}}=-\left[\frac{G M m}{r}\right]_{r_{e}}^{h+r_{e}}
$$

Starting height (ground level is not $\mathrm{Om} r=6.4 \times 10^{6} \mathrm{~m}$)

$$
\text { Absolute Gravitational Potential Energy }=-\frac{m G M}{r}
$$

- All absolute E_{p} values are negative, but higher up are closer to 0 .

Potential energy calculations - area under graph

Find the work done to lift the 100 ton space shuttle 400 km above the Earth.

Total work:

$$
W=3.6 \times 10^{11} \mathrm{~J}
$$

Potential energy calculations - using work function

Absolute Gravitational Potential Energy $=-\frac{m G M}{r}$

At the surface:
$E_{p}=-\frac{\left(1.00 \times 10^{5} \mathrm{~kg}\right)\left(6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}\right)\left(5.97 \times 10^{24} \mathrm{~kg}\right)}{6.37 \times 10^{6} \mathrm{~m}}$
$E_{p}=-6.25 \times 10^{12} \mathrm{~J}$
At 400 km :
$E_{p}=-\frac{\left(1.00 \times 10^{5} \mathrm{~kg}\right)\left(6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}\right)\left(5.97 \times 10^{24} \mathrm{~kg}\right)}{6.77 \times 10^{6} \mathrm{~m}}$
$E_{p}=-5.88 \times 10^{12} \mathrm{~J}$

$$
W=\Delta E_{p}=3.7 \times 10^{11} \mathrm{~J}
$$

Escape velocity

- Given enough kinetic energy, a projectile will be able to escape the gravitational pull of the Earth.
- The minimum kinetic energy needed would be enough energy to overcome the gravitational potential energy requirements.

Kinetic energy $\quad \frac{1}{2} m v^{2}=\frac{\text { GMm }}{r} \quad$ Absolute gravitational energy

$$
\begin{gathered}
v=\sqrt{\frac{2 G M}{r}} \\
v=\sqrt{\frac{2\left(6.7 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}\right)\left(6.0 \times 10^{24} \mathrm{~kg}\right)}{6.4 \times 10^{6} \mathrm{~m}}} \\
v \approx 11 \mathrm{~km} / \mathrm{s}
\end{gathered}
$$

Apparent weight

- THERE IS NO FEELING OF WEIGHTIN ORBIT....... BUT NOT BECAUSE THERE IS NO GRÄVITY!
- If there was no gravity - how would the space shuttle still be in orbit?
- What we feel as weight is the force of the surface pushing up on us (Normal reaction force).
- In orbit, the satellite is falling down as it moves forward.
- How do you feel in a lift with a downwards acceleration?

Apparent weight

A 60kg person accelerating down at $2 \mathrm{~m} / \mathrm{s}^{2}$.

If the floor of the lift was to be accelerating at the rate of gravity: $a=g \therefore \mathrm{mg}=\mathrm{ma} \therefore \mathrm{F}_{\mathrm{N}}=0$

This is the situation in an orbiting satellite: there is no upwards force acting on the occupants.

Apparent weight

Gravity on the Earth

Objects weigh less at the equator for two reasons:

- The Earth is wider at the equator due to spinning while molten. Gravity is less as objects are further from the centre of the Earth (varies with $1 / \mathrm{r}^{2}$).
- The surface is "falling away" - accelerating towards the centre of the Earth.

Gravity - varies with latitude

