

The Spring pendulum

- A mass of 1.0 kg is attached to a long spring of stiffness k = 30 N/m. The mass is allowed to fall from the starting height, at which the spring was unstretched.
- Calculate the distance (x) over which the mass will oscillate.
- Calculate the maximum speed reached.
- Calculate the % of each energy type at the three points.

Kinetic energy
$$\longrightarrow E_k = mgx - \frac{1}{2}kx^2$$

Difference of gravitational & elastic energy

At point c, all of the potential energy from point a has been converted into elastic energy. $E_k = O$ at both points.

$$O = mgx - \frac{1}{2}kx^{2} \qquad O = x(mg - \frac{1}{2}kx) \longrightarrow x = \frac{2mg}{k} = 0.67m$$

$$x = Om \qquad x = 0.67m \text{ is the maximum extension}$$

Conservation of energy: maximum speed

$$E(x) = mgx - \frac{1}{2}kx^2$$

E'(x) = mg - kx

Kinetic energy as a function of height

Derivative of kinetic energy

Maximum kinetic energy occurs at: C

$$D = mg - kx$$
 $x = \frac{mg}{k}$

x = 0.33m

(That's where there is zero net force - it slows down as it gets past this.)

Potential energy = mgx = 3.3J Elastic energy = ½kx² = 1.7J Kinetic energy = 1.7J

$$v = \sqrt{\frac{2E_k}{m}}$$

v = 1.8m/s

Energy form	a (highest)	b (mid point)	c (lowest)
Potential	6.7J = 100%	3.3J = 50%	<i>O</i> J = <i>O</i> %
Kinetic	OJ = 0%	1.7J = 25%	OJ = 0%
Elastic	OJ = 0%	1.7J = 25%	6.7J = 100%

Energy vs extension

Energy vs time

