Electricity basics

- Electric charge
- Potential difference
- Current
- Resistance
- Ohm's law
- Series circuits
- Parallel circuits
- Combination circuits - series + parallel
- Power

Electric charge

- Charge is a fundamental property of matter.
- We are usually talking about the movement of electrons (negative charge).
- But in electrochemical process, there is also a movement of positive charged ions.
- 1 coulomb $=$ The charge of 6.25×10^{18} electrons.
- One electron has a charge of 1.60×10^{-19} coulombs.

Current

- Current is the measure of how much charge is moving through a point in a time period.
- A higher current means that more charge is moving.
- 1 amp $=1$ coulomb $/$ second $\left(6.25 \times 10^{18}\right.$ electrons $/$ second).
- Some scales: Nerve impulses - microamps, iPod - milliamps, toaster amps, car engine starting - hundreds of amps, transmission lines, thousands of amps.
- A current of less than 100 mA through the heart can be fatal.
- Electric current move slowly, but the electric field is nearly instant.

Low current - few electrons moving
High current - more electrons moving

Potential difference

- Separating positive \& negative charge requires work to be done - this is a form of potential energy.
- A higher potential difference means that the charges carry more energy.
- This is the "push" behind electric charge. (Sometimes known as the Electro Motive Force - EMF)
- Measured in volts - 1 volt = 1 Joule / coulomb

Potential difference $=\frac{\text { Energy }}{\text { Charge }}$

> Potential differences can be positive or negative
> - relative to the Earth at OV.

Resistance

- Resistance is the measure of amount potential difference needs to be pushing to get an amp of current.
- Higher resistance: higher potential difference needed or lower current.
- 1 ohm = 1 volt $/ \mathrm{amp}$.
- We can consider a whole electric circuit to be the equivalent of one resistor.
- Adding resistors in series increases resistance.
- Adding resistors in parallel reduces resistance.

Resistance $=\frac{\text { Potential difference }}{\text { Current }}$

A 2500Ω resistor (each colour indicates one of the numbers)

Ohm's law

Current can be increased in a circuit by:

- Increasing the potential difference pushes more electrons through.
- Decreasing the resistance to allow more electrons through.
- For example, a brighter globe has a lower resistance than a dim one.

$$
\text { Current }=\frac{\text { Potential difference }}{\text { Resistance }} \quad I=\frac{V}{R}
$$

An ohmic resistor has a constant resistance over a wide range of potential differences.

Series circuits

- The current through a series circuit is the same at all points.
- Around the whole circuit, the sum of the potential differences is zero.
$R=R_{1}+R_{2}+\ldots .$.
$R=100 \Omega+200 \Omega=300 \Omega$
9.0 V

$$
I=\frac{V}{R}
$$

$V=\mathbb{R} \quad V=0.030 A \times 100 \Omega \quad V=0.030 A \times 200 \Omega$

$$
V=3.0 \mathrm{~V} \quad V=6.0 \mathrm{~V}
$$

This is also known as a voltage divider - the fraction of voltage is the as the fraction of resistance.

Parallel circuits

- The potential difference across two or more parallel components is the same.
- At any junction in the circuit, the sum of the currents in is equal to the sum of the currents out.

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \quad \frac{1}{R}=\frac{1}{100 \Omega}+\frac{1}{200 \Omega} \quad \frac{1}{R}=\frac{3}{200 \Omega} \quad R=67 \Omega
$$

Combination circuits - series + parallel

1. Find the total resistance.
2. Find the total current.
3. Use I = V/R or resistance ratios for currents.
4. Use $V=I R$ or voltage divider rule for voltages.

$$
V_{1}=0.0159 \mathrm{~A} \times 500 \Omega=7.94 \mathrm{~V}
$$

Parallel resistors

$v_{2}=9.00 \mathrm{~V} \times\left(\frac{67 \Omega}{567 \Omega}\right)=1.06 \mathrm{~V}$

$$
V_{3}=V_{2}=1.06 \mathrm{~V}
$$

- Power is the measure of how much energy is dissipated through a device in a time period.
- 1 Watt = 1 Joule / second.

Some scales: torch light - watts, heater - kilowatts, electric generator gigawatts.

Power calculations

- eg a light globe that draws a current of 200 mA at 240 V .
- $P=I V=0.2 \mathrm{~A} \times 240 \mathrm{~V}=48 \mathrm{~W}=0.048 \mathrm{~kW}$
- Energy $=$ Power \times time $=0.048 \mathrm{~kW} \times 24$ hours
- In 24 hours, the total energy used is 1.15 kWh .
- This is the same as using 1.15 kW for 1 hour.
- Electricity is billed at around 25 c per kWh.
- This would cost : $25 c \times 1.15=29$ cents / day .

$1 \mathrm{kWh}=1000 \mathrm{~J} / \mathrm{s} \times 3600 \mathrm{~s}=3.6 \mathrm{MJ}$

