Calculating forces

- Gravity \& Newton's third law
- Tension \& pulleys
- Car towing a trailer
- Inclined planes

Gravity \& Newton's third law

- The forces on a stationary object are not an action reaction pair.
- (Action reaction pairs act on different objects).
- The Earth pulls down on the box. The box pulls up on the Earth.
- The box pushes down on the surface (contact force). The surface pushes up on the box. Surface pushes up on box (Normal reaction force)

Tension \& pulleys

- Two weights on a pulley: $4 \mathrm{~kg} \& 10 \mathrm{~kg}$.
- What is the acceleration of the system?

$$
a=\frac{\Sigma F}{m}=\frac{100 \mathrm{~N}-40 \mathrm{~N}}{10 \mathrm{~kg}+4 \mathrm{~kg}}
$$

- What is the tension in the string?

$$
\sum F=4.0 \mathrm{~kg} \times 4.3 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
a=\frac{60 \mathrm{~N}}{14 \mathrm{~kg}} \quad a=\frac{g\left(m_{2}-m_{1}\right)}{\left(m_{2}+m_{1}\right)}
$$

$$
a=4.3 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
\Sigma F=m_{1} a=T-m_{1} g
$$

$$
T=m_{1} a+m_{1} g
$$

$$
T=m_{1}(g+a)
$$

$$
=17 \mathrm{~N}
$$

Car towing a trailer

- What is the acceleration?
- What is the tension force pulling forward on the trailer?

$$
\begin{aligned}
& a=\frac{6000 \mathrm{~N}-3000 \mathrm{~N}}{3000 \mathrm{~kg}} \\
& a=\frac{3000 \mathrm{~N}}{3000 \mathrm{~kg}} \\
& a=1.0 \mathrm{~m} / \mathrm{s}^{2} \\
& \text { Trailer: } \\
& \text { Car: } \\
& \sum F=m a=1000 \mathrm{~kg} \times 1.0 \mathrm{~m} / \mathrm{s}^{2} \quad \sum F=m a=2000 \mathrm{~kg} \times 1.0 \mathrm{~m} / \mathrm{s}^{2} \\
& \sum F=1000 \mathrm{~N} \\
& 1000 \mathrm{~N}=\mathrm{T}-1800 \mathrm{~N} \\
& T=2800 N \text { (forward) } \\
& \sum F=2000 \mathrm{~N} \\
& 2000 \mathrm{~N}=6000 \mathrm{~N}-1200 \mathrm{~N}-T \\
& T=2800 \mathrm{~N} \text { (back) }
\end{aligned}
$$

Inclined planes

- An object at rest on an inclined plane has all forces adding to zero.
- The weight force (acting straight down) can be resolved into two components.

